

Tema: Trabajo Mecánico

Elaboró: Mtro. Carlos Alberto Julián Sánchez

📝 Ejercicios Propuestos: Ley de Gravitación Universal

- 1. Un cajón es empujado por una persona con una fuerza horizontal constante de 200 N. Si el cajón se desplaza 5 metros en la misma dirección de la fuerza, ¿qué cantidad de trabajo realizó la persona?
- 2. Un niño jala un carrito de juguete con una cuerda, aplicando una fuerza de 50 N. La cuerda forma un ángulo de 30° con respecto a la horizontal. Si el carrito se mueve 10 metros horizontalmente, ¿cuál es el trabajo realizado por el niño?
- 3. Un levantador de pesas sube una barra de 150 kg desde el suelo hasta una altura de 2 metros por encima de su cabeza. ¿Cuál es el trabajo mínimo que debe realizar el levantador para subir la barra? (Considera $g \approx 9.8 \text{ m/s}^2$).
- **4.** Un bloque de 10 kg es arrastrado 8 metros a través de una superficie horizontal por una fuerza de 60 N que actúa paralela a la superficie. Si el coeficiente de fricción cinética entre el bloque y la superficie es de 0.4, calcula:
 - a) El trabajo realizado por la fuerza de 60 N.
 - b) El trabajo realizado por la fuerza de fricción.
 - c) El trabajo neto sobre el bloque.
- 5. Un hombre sostiene una maleta de 20 kg sin moverse durante 30 segundos. ¿Qué trabajo mecánico realiza sobre la maleta durante ese tiempo?
- **6.** Para subir un piano de 300 kg por una rampa inclinada de 8 metros de largo, se necesita una fuerza paralela a la rampa de 2500 N. ¿Qué trabajo realiza esta fuerza para llevar el piano hasta el final de la rampa?
- 7. Se realiza un trabajo de 490 J para levantar un objeto a una altura de 10 metros con velocidad constante. ¿Cuál es la masa del objeto?

Encuentra más ejercicios resueltos y explicados paso a paso en:

Soluciones Detalladas

1. Trabajo con Fuerza Horizontal

Datos: $F = 200 \text{ N}, d = 5 \text{ m}, \theta = 0^{\circ}$ (la fuerza y el desplazamiento son paralelos).

Fórmula: W = F * d * $cos(\theta)$

Sustitución: W = $200 \text{ N} * 5 \text{ m} * \cos(0^\circ)$

Resolución: Como $cos(0^\circ) = 1$, la fórmula se simplifica a W = F * d. W = 200 * 5 =

1000 J **W** = **1000 Joules**

2. Trabajo con Fuerza en Ángulo

Datos: F = 50 N, d = 10 m, θ = 30°.

Fórmula: W = F * d * $cos(\theta)$

Sustitución: W = 50 N * 10 m * cos(30°)

Resolución: $cos(30^{\circ}) \approx 0.866 \text{ W} = 50 * 10 * 0.866 = 500 * 0.866 \text{ W} = 433 \text{ Joules}$

3. Trabajo Contra la Gravedad

Datos: m = 150 kg, d = 2 m.

Resolución: Para levantar la barra, se debe aplicar una fuerza (F) al menos igual a su peso (P). El peso se calcula como P = m * g. F = P = 150 kg * 9.8 m/s² = 1470 N. La fuerza se aplica hacia arriba y el desplazamiento es hacia arriba, así que θ = 0°. W = F * d = 1470 N * 2 m **W = 2940 Joules**

4. Trabajo Neto con Fricción

Datos: m = 10 kg, d = 8 m, $F_{aplicada} = 60 N$, $\mu_{k} = 0.4$.

- a) Trabajo de la fuerza aplicada (W_app): La fuerza es paralela al desplazamiento (θ = 0°). W_app = 60 N * 8 m = 480 J
- b) Trabajo de la fuerza de fricción (W_f): Primero, calculamos la fuerza de fricción (f_k). f_k = μ _k * N. En una superficie horizontal, la fuerza normal (N) es igual al peso (P = m*g). N = 10 kg * 9.8 m/s² = 98 N. f_k = 0.4 * 98 N = 39.2 N. La fricción siempre se opone al movimiento, así que el ángulo entre la fuerza de fricción y el desplazamiento es de 180°. W_f = f_k * d * cos(180°) = 39.2 N * 8 m * (-1) = -313.6 J (El trabajo de la fricción es negativo porque quita energía al sistema).

Encuentra más ejercicios resueltos y explicados paso a paso en:

c) Trabajo neto (W_neto): El trabajo neto es la suma de todos los trabajos realizados.

5. Trabajo Nulo (Sin Desplazamiento)

Datos: m = 20 kg, d = 0 m.

Fórmula: W = F * d * $cos(\theta)$

Resolución: Aunque el hombre aplica una fuerza hacia arriba para sostener la maleta, el desplazamiento (d) es cero. W = F * (0) * $\cos(\theta)$ = 0 J. **W = 0 Joules**. Fisiológicamente hay un gasto de energía, pero en términos de física mecánica, no se realiza trabajo sobre la maleta.

6. Trabajo en una Rampa Inclinada

Datos: F = 2500 N, d = 8 m.

Resolución: El problema especifica que la fuerza se aplica paralela a la rampa, y el desplazamiento también es a lo largo de la rampa. Por lo tanto, el ángulo θ entre la fuerza y el desplazamiento es 0°. W = F * d * $\cos(0^\circ)$ = 2500 N * 8 m * 1 **W** = **20,000 Joules**

7. Calcular la Masa a partir del Trabajo

Datos: W = 490 J, d = 10 m.

Resolución: El trabajo para levantar un objeto es W = F * d, donde F es la fuerza necesaria para contrarrestar el peso (F = m*g). W = (m * g) * d Despejamos la masa (m): m = W / (g * d)

Sustitución: $m = 490 \text{ J} / (9.8 \text{ m/s}^2 * 10 \text{ m}) m = 490 / 98 m = 5 \text{ kg}$

Encuentra más ejercicios resueltos y explicados paso a paso en: